Creating Beautiful Sankey Diagrams From App Insights Custom Events

I came across this tweet the other day:

It sounded a lot like a challenge to me, so I just couldn’t resist!!

Sankey diagrams for those who don’t know are an amazing tool for describing user flows AND are the basis for one of the most famous data visualizations of all-time. But really, I had no idea how to create one. So, I googled Sankey + PowerBI and came across this fantastic Amir Netz video:

So all you need to create the diagram is a table with 3 columns:

  • Source
  • Destination
  • Count

And PowerBI takes care of the rest.

We already know you can take any App Insights Analytics query and “export” the data to PowerBI.

So the only problem now is how do I transform my AppInsights custom events table into a Sankey events table?

Let’s go to Analytics!

First it’s best to have an idea of what we’re trying to do. Decide on 5-10 events that make sense for a user session flow. In my case, I want to see the flow of users through a new feature called “CTD”. So the events I chose are:

  • CTD_Available (feature is available for use)
  • CTD_Result (user used the feature and got a result)
  • CTD_DrillIn (user chose to further drill-in the results)
  • CTD_Feedback (user chose to give feedback)

In every step, I’m interested in seeing how many users I’m “losing”, and what they’re doing next.

Ok, let’s get to work!

First query we’ll

  • Filter out only relevant events
  • Sort by timestamp asc (don’t forget that in this chart, order is important!)
  • Summarize by session_id using makelist, to put all events that happened in that session in an ordered list. If you’re unfamiliar with makelist, all it does is take all the values of the column, and stuffs them into a list. The resulting lists are the ordered events that users triggered in each session.
customEvents
| where timestamp > ago(7d)
| where name=="CTD_Available" or name=="CTD_Result" or 
        name=="CTD_Drillin" or name== "CTD_Feedback"
| sort by timestamp asc
| summarize l=makelist(name) by session_Id

Next step I’ll do is add an “EndSession” event to each list, just to make sure my final diagram is symmetric. You might already have this event as part of your telemetry, I don’t. This is optional, and you can choose to remove this line.

| extend l=todynamic(replace(@"\]", ',"EndSession" ]', tostring(l))) 

Next step, I’d like to create “tuples” for source and destination from each list. I want to turn:

Available -> Result -> Feedback -> EndSession

Into:

[Available, Result], [Result, Feedback], [Feedback, EndSession]

To do this, I need to chop off the first item in the list and “zip” it (like a zipper) with the original list. In c# this is very easy – list.Zip(list.Skip(1))..

Amazingly, App Analytics has a zip command! Tragically, it doesn’t have a skip… :(. Which means we need to do some more ugly regex work in order to chop off the first element.

| extend l_chopped=todynamic(replace(@"\[""(\w+)"",", @"[", tostring(l)))

Then I zip, and use mvexpand, to create one row per tuple created

| extend z=zip(l, l_chopped) 
| mvexpand z

And I remove the lonely “EndSession”s which are useless artifacts.

| where tostring(z[0]) != "EndSession"

Last thing left to do is summarize to get the counts for each unique tuple, and remove the tuples with identical source and destinations.

The final query:

customEvents
| where timestamp > ago(7d)
| where name=="CTD_Available" or name=="CTD_Result" or 
        name=="CTD_Drillin" or name== "CTD_Feedback"
| sort by timestamp asc
| summarize l=makelist(name) by session_Id
| extend l=todynamic(replace(@"\]", ',"EndSession" ]', tostring(l))) 
| extend l_chopped=todynamic(replace(@"\[""(\w+)"",", @"[", tostring(l)))
| extend z=zip(l, l_chopped) 
| mvexpand z
| where tostring(z[0]) != "EndSession"
| summarize cnt() by source=tostring(z[0]),dest=tostring(z[1])
| where source!=dest

We’re in business!

Now I want to get this data to Power BI…

  • Download Power BI desktop.
  • Goto the Power BI visuals gallery, search “sankey” and download the visuals you want (my preference is “sankey with labels”)
  • Open Power BI, and goto GetData -> BlankQuery
  • In Query editor, goto View -> Advanced Editor
  • Now go back to the prepared AppAnalytics query, and hit export to Power BI

ExportPBI

  • Take the query in the downloaded text file, and paste it into the query editor
  • Press done

Now the data should be there! Just one more step!

  • Back in PowerBI, import the visuals you previously downloaded

ImportVisuals

  • Select Source -> source, Destination -> dest, Weight -> count_

WOOT!

Sankey

Cool uses for the top-nested operator

There’s a pretty nice operator in Kusto (or App Insights Analytics) called top-nested.

It basically allows you to do a hierarchical drill-down by dimensions. Sounds a bit much, but it’s much clearer when looking at an example!

So a simple use for it could be something like getting the top 5 result-codes, and then a drill down for each result code of top 3 request names for each RC.

requests
| where timestamp > ago(1h)
| top-nested 5 of resultCode by count(),
  top-nested 3 of name by count()

So I can easily see which operation names are generating the most 404’s for instance.

This is pretty cute, and can be handy for faceting.

But I actually find it more helpful in a couple of other scenarios.

First one is getting a chart of only the top N values. For instance, if I chart my app usage by country, I get a gazillion series of all different countries. How can I easily filter the chart to show just my top 10 countries? Well one way is to do the queries separately, and add a bunch of where filters to the chart…

But top nested can save me all that work:

let top_countries = view()
{
  customEvents
  | where timestamp > ago(3d)
  | top-nested 5 of client_CountryOrRegion by count()
};
top_countries
| join kind= inner
  (customEvents
    | where timestamp >= ago(3d)
   ) on client_CountryOrRegion
| summarize count() by bin(timestamp, 1h), client_CountryOrRegion
| render timechart

top5countries

A beautiful view of just my top 5 countries…

I’ve actually used the same technique for a host of different dimensions (top countries, top pages, top errors etc.), and it can also be useful to filter OUT top values (such as top users skewing the numbers), by changing the join to anti-join.

The second neat scenario is calculating percentages of a whole. For instance – how do you calculate the percentage of traffic per RC daily?

Yeah, you can do this using a summarize and the (newly-added) areachart stacked100 chart kind:

requests
| where timestamp >= ago(3d)
| where isnotempty(resultCode)
| summarize count() by bin(timestamp, 1h), resultCode
| render areachart kind=stacked100

stacked100

But this only partially solves my problem.

Because ideally, I don’t want to look at all these 200’s crowding my chart. I would like to look at only the 40X’s and 500’s, but still as a percentage of ALL my traffic.

I could do this by adding a bunch of countif(rc=403)/count(), countif(rc=404)/count()… ad nauseum, but this is tiresome + you don’t always know all possible values when creating a query.

Here’s where top-nested comes in. Because it shows the aggregated value for each level, creating the percentages becomes super-easy. The trick is simply doing the first top-nested by timestamp:

requests
| where timestamp > ago(14d)
| top-nested 14 of bin(timestamp, 1d) by count() ,
  top-nested 20 of resultCode by count()
| where resultCode !startswith("20")
| where resultCode !startswith("30")
| project pct=aggregated_resultCode * 1.0 / aggregated_timestamp, 
          timestamp, resultCode 
| render timechart

top-nested-oct

Pretty nice, no?

Calculating Stickiness Using AppInsights Analytics

Update:

There is a new, simpler, better way to calculate usage metrics such as stickiness, churn and return rate.


In previous posts I  demonstrated some simple yet nifty tricks to get stuff done in app insights analytics – like extracting data from traces, or joining tables.

Those were mostly pretty simple queries, showing some basic Kusto techniques.

In this post I’m going to show something much more complex, with some advanced concepts.

We’re gonna take it slow, but be warned!

What I wanna do is calculate “Stickiness“. This is a measure of user engagement, or addiction to your app. It’s computed by dividing DAU (daily active users) by MAU (monthly active users) in a rolling 28 day window. It basically shows what percentage of your total user base is using your app daily.

Computing your DAU is pretty simple in analytics, and can be done using a simple dcount aggregation:

requests
| where timestamp > ago(60d)
| summarize dcount(user_Id) by bin(timestamp, 1d)

But how do you compute a rolling 28-day window unique count of users? For this we’re gonna need to get familiar with some new Kusto operators:

hll() – hyperloglog – calculates the intermediate results of a dcount.

hll_merge() – used to merge together several hll intermediate results.

dcount_hll() – used to calculate the final dcount from an hll intermediate result.

range() – generates a dynamic array with equal spacing

mvexpand() – expands a list into rows

let – binds names to expressions. I’ve already shown a use for let in a past post.

It’s kind of a lot, but let’s get going and see how we’re gonna use each of these along the way.

Let’s do this in steps. Our goal is to calculate a moving 28 day window MAU. First thing, instead of dcount we’ll use hll, to get the intermediate results:

requests
| where timestamp > ago(60d)
| summarize hll(user_Id) by bin(timestamp, 1d)

With the intermediate results in place, the next phase is to think about which dates will use each intermediate result. If we take 20/1/2017 as an example, well, we know that each subsequent day, 28 days forward, will want to use this hll for it’s moving window result. So we build a list of [21/1/2017, 22/1/2017 … 18/2/2017].

So what we do here, and this is a little dirty, is create a list of all the future dates that will need this result. We do this using the range operator:

requests
| where timestamp > ago(60d)
| summarize hll(user_Id) by bin(timestamp, 1d)
| extend periodKey = range(bin(timestamp, 1d), timestamp+28d, 1d)

Now let’s turn every item in the periodKey column list, into a row in the table. We’ll do this with mvexpand:

requests
| where timestamp > ago(60d)
| summarize hll(user_Id) by bin(timestamp, 1d)
| extend periodKey = range(bin(timestamp, 1d), timestamp+28d, 1d)
| mvexpand periodKey

So now, when sorting by periodKey, each date in that column has exactly 28 rows, each with an hll from a different date it needs to calculate the total dcount. We’re almost done! Let’s calculate the dcount:

requests
| where timestamp > ago(60d)
| summarize hll(user_Id) by bin(timestamp, 1d)
| extend periodKey = range(bin(timestamp, 1d), timestamp+28d, 1d)
| mvexpand periodKey
| summarize rollingUsers = dcount_hll(hll_merge(hll_user_Id)) by todatetime(periodKey)

That’s the 28 day rolling MAU right there!

Now let’s make this entire query modular, so we can calculate any length rolling dcount we’d like – including a zero day rolling (DAU actually) – and calculate our metric:

let start=ago(60d);
let period=1d;
let RollingDcount = (rolling:timespan)
{
requests
| where timestamp > start
| summarize hll(user_Id) by bin(timestamp, period)
| extend periodKey = range(bin(timestamp, period), timestamp+rolling, period)
| mvexpand periodKey
| summarize rollingUsers = dcount_hll(hll_merge(hll_user_Id)) by todatetime(periodKey)
};
RollingDcount(28d)
| join RollingDcount(0d) on periodKey
| where periodKey < now() and periodKey > start + 28d
| project Stickiness = rollingUsers1 *1.0/rollingUsers, periodKey
| render timechart

STICKINESS ON THE FLY!

stickiness

App Analytics: Using “Let”, and a really useful investigation query

So here’s just a small tidbit that can be useful.

First the “let” keyword – it basically allows you to bind a name to an expression or to a scalar. This of course is really useful if you plan to re-use the expression.

I’ll give an example that I use in real-life – a basic investigative query into failed requests. I’m joining exceptions and failed dependencies (similar to NRT proactive detection). I’m using the let keyword to easily modify the time range of my query.

Here it is, enjoy!

 

let investigationStartTime = datetime("2016-09-07");
let investigationEndTime = investigationStartTime + 1d;
requests
| where timestamp > investigationStartTime
| where timestamp < investigationEndTime
| where success == "False"
| join kind=leftouter(exceptions
   | where timestamp > investigationStartTime
   | where timestamp < investigationEndTime
   | project exception=type , operation_Id ) on operation_Id
| join kind=leftouter (dependencies
   | where timestamp > investigationStartTime
   | where timestamp < investigationEndTime
   | where success == "False"
   | project failed_dependency=name, operation_Id ) on operation_Id
| project timestamp, operation_Id , resultCode, exception, failed_dependency

Tweaking Proactive Alerts

I’ve already talked about how cool proactive alerts are, but one thing I missed is that you can actually tweak these alerts through the Azure portal.

Go to the “Alerts” blade, and there you should find a single “Proactive Diagnostics” alert.

nrt-alert

If you click it and go to the alert configuration, you can set email recipients, setup a webhook,  and enable/disable.

One thing that is really useful is you can set “Received detailed analysis” checkbox:

nrt-detailed

This will make sure you get the entire deep-dive analysis of the incident straight to your email inbox, without needing to go to the portal. This can save some very valuable minutes during a live-site incident!

 

 

App Analytics Machine Learning: Autocluster

Don’t freak out about the title. I’m going to show some powerful machine-learning algorithms behind the scenes — But they are also super-duper easy to use and understand from analytics query results.

I’ll start with Autocluster(). What this operator does, is take all your data, and classify it into clusters. So we’re basically bunching your data into groups. This is very useful in a few scenarios:

  1. Classify request failures – easily see if all failures have a certain response code, are on a certain role instance, a certain operation, or from a specific country etc.
  2. Classify exceptions.
  3. Classify failed dependencies.

This is actually the feature that is being used in the Near Real-Time Proactive Alerts feature to classify the characteristics of the request failure spike.

Let’s get to an example.

I just deployed my service, and checking the portal I see a huge spike in failed requests:

FRRSpike

 

So I know something went terribly wrong, I just don’t know what.

Now, ordinarily what I would do in a situation like this is just take a random failed request, and try to trace the reason it specifically failed. But this can be wrong – several times I just happened to take a failed request that was completely not indicative of the real problem.

So this is where Autocluster() kicks in.

requests
| where success == "False"
| where timestamp > datetime("2016-06-09 14:00")
| where timestamp < datetime("2016-06-09 18:00")
| join (exceptions | project type, operation_Id ) on operation_Id
| project name , cloud_RoleInstance , type
| evaluate autocluster(0.85)

This is basically a query of all the failed requests in the specific timeframe, joined to exceptions. On top of this query I’m running the “evaluate autocluster()” command.

The result I’m expecting is bunching all these records into several groups, which will help me diagnose the common characteristics of my failures.

The results look like this:

autocluster-results

!!!

So the autocluster algorithm went over all the data, and found that

  • 71% of the requests failed due to 1 specific exception.
  • The exception is found on all of my instances – see the “*” in the instance column.

Autocluster just diagnosed the problem in my service, going over thousands of records, in an instant! It’s easy to see why I think this is awesome.

FYI, Autocluster can take in as input any column, even custom dimensions. Ping me in the comments if you have any questions about the usage.

 

 

App Insights Analytics: Extracting data from traces

I wanna show two real-world examples (it really happened to me!) of extracting data from traces, and then using that data to get really great insights.

So a little context here – I have a service that reads and processes messages from an Azure Queue. This message processing can fail, causing the same message to be retried many times.

I We recently introduced a bug into the service (as usual.. ) which caused requests to fail on a null reference exception. I wanted to know exactly how many messages were affected by this bug, but it was kind of hard to tell because the retries cause a lot of my service metrics to be off.

Luckily I have a trace just as I am beginning to process a message that shows the message id :

Start handling message id: 0828ae20-ba09-4f83-bb46-69f4fe25b510, dequeue count: 1, message: …

So what I did is extract the message id from the trace using a simple regex, and was then able to count messages using dcount:

traces
 | where timestamp > ago(1d)
 | where message startswith "Start handling"
 | extend messageid = tostring(extract("Start handling message id: ([^:\\/\\s]+), ", 1, message))
 | summarize dcount(messageid)

And in order to count how many messages were affected by the exception, I did a double join – to the failed requests and to exceptions tables:

requests 
| where timestamp > ago(1d)
| where success == "False"
| join (exceptions
   | where timestamp > ago(1d)
   | where type contains "NullRef"
   ) on operation_Id
| join (traces
   | where timestamp > ago(1d)
   | where message startswith "Start handling"
   | extend messageid = tostring(extract("Start handling message id: ([^:\\/\\s]+), ", 1, message))
   ) on operation_Id
| summarize dcount(messageid)

Voila!

The second example is similar, but this time I extracted a measurement.

Again I started from a trace – I have a trace detailing exactly how late a message that came in the queue is. It looks like this:

Latency: 21 minutes.

I wanted to turn these traces into measurable data that I can slice and dice on. So I used the same extend+extract method as before + a todouble:

traces
| where timestamp > ago(1d)
| where message contains "Latency: "
| extend latency = todouble(extract("Latency: ([^:\\/\\s]+) minutes.", 1, message))
| summarize percentile(latency, 90)

AWESOME!

Cool AppInsights Analytics: Extracting url host with a regular expression

Another nice feature of Kusto / Application Insights Analytics is full on support for regular expressions using the extract keyword.

A very useful application of this is all matter of manipulations you can do over the “url” field in requests. A common ask is understanding how much traffic is generated by any of your different hosts.

Since Analytics only carries the full url field, we need to parse out the host out using a regex. I took a really really simple regex in this case, but obviously it can be much more complex.

pageViews
| where timestamp > ago(1d)
| extend urlhost=extract('^(http://|https://)([^:\\/\\s]+)', 2, url)
| summarize count() by urlhost
| render piechart

Update:

There is now a simpler method to extract all url parts – parseurl.

requests
| take 5
| extend urlParts = parseurl(url)
| project url, urlParts, urlParts.Scheme, urlParts.Host, urlParts.Path, urlParts.Port

host